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USB Mass Storage Class on an Embedded Host
INTRODUCTION
With the introduction of Microchip's microcontrollers
with the USB OTG peripheral, microcontroller
applications can easily support USB Embedded Host
functionality. One of the most common uses of this
capability is to interface to mass storage devices, such
as USB Flash Drives and memory card readers. These
devices utilize the USB Mass Storage Class.

 USB Mass Storage Class

Overview
Of the four transfer types supported by USB, the one
most suitable for large data transfers is Bulk. Bulk
transfers use the USB bandwidth efficiently, in that
they utilize all of the remaining bandwidth in a frame
after Control, Interrupt and Isochronous transfers are
complete. They are not constrained to only a certain
number of bytes per frame. They also incorporate
error checking, so the data is ensured to be accurate.
The exact amount of time available for a bulk transfer
will depend on the amount of other traffic that is on
the bus. If several other transfers must also be
performed, there may be very little bandwidth
available for Bulk transfers in a frame.  Therefore,
Bulk transfers should be used only for non-time critical
operations.
The class, subclass and protocol designators for a
Mass Storage Device are not contained in the
bDeviceClass, bDeviceSubClass and
bDeviceProtocol fields of the Device Descriptor.
Instead, these fields are all set to 0x00, and the
designators are specified in the bInterfaceClass,
bInterfaceSubClass and bInterfaceProtocol fields of
the Interface Descriptor. The most common
configuration for USB Mass Storage devices is:
• bInterfaceClass - 0x08 (Mass Storage Class)
• bInterfaceSubClass - 0x06 (SCSI Primary 

Command-2 (SPC-2))
• bInterfaceProtocol - 0x50 (Bulk Only Transport)
A Mass Storage device may contain multiple logical
units, each represented by a Logical Unit Number
(LUN). All logical units on the device share the same
device characteristics, but can be addressed

independently via their LUN. LUNs are numbered
from 0 to 15. If a device does not support multiple
LUNs, then 0 is specified for the LUN.
This implementation of the Mass Storage Class
provides support for the Bulk Only Transport. In this
protocol, three endpoints are utilized:
• Endpoint 0 for Control transfers
• One Bulk IN endpoint 
• One Bulk OUT endpoint
Bulk transfers consist of three stages:
• Command
• Data (optional)
• Status
The Command stage is sent from the Host to the
Peripheral via the Bulk OUT endpoint. The Data
stage, if present, utilizes the Bulk IN endpoint if the
data is being transferred from the Peripheral to the
Host, or the Bulk OUT endpoint if the data is being
transferred from the Host to the Peripheral. The
Status stage utilizes the Bulk IN endpoint for the Host
to receive status information from the Peripheral
about the transfer. The flow of the stages is shown in
Figure 1.
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FIGURE 1: COMMAND/DATA/STATUS FLOW

COMMAND BLOCK WRAPPER (CBW)
The Command Block Wrapper is sent to the Peripheral
during the Command phase of the transfer. The CBW
is a 31-byte packet that includes the following
information:
• Tag to identify the transfer
• Number of bytes to transfer during the Data phase
• LUN to which the transfer applies
• Command block to be executed by the device
The format of the CBW is shown in Table 1.

TABLE 1: COMMAND BLOCK WRAPPER

The CBW is generated internally by the Mass Storage  client driver.

Ready

Command Transport 
(CBW)

Data-In 
  (to host)

Data-Out 
(from host)

Status Transport 
(CSW)

Command Block Wrapper (CBW) 

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
0-3 dCBWSignature  
4-7 dCBWTag  
8-11 dCBWDataTransferLength  
12 bmCBWFlags  
13 Reserved (0)   bCBWLUN

14 Reserved (0)   BCBMCBLength

15-30 CBWCB 
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COMMAND STATUS WRAPPER 
(CSW)
The Command Status Wrapper is sent to the Host from
the Peripheral. The CSW is a 13-byte packet that
includes the following information:
• Tag to identify the transfer (must match the tag in 

the CBW)
• The difference between the number of data bytes 

expected and the number actually transferred
• Success or Failure of the command

The format of the CSW is shown in Table 2.

TABLE 2: COMMAND STATUS WRAPPER

The CSW is received and checked internally by the Mass Storage client driver.

Command Status Wrapper (CSW) 

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
0-3 dCBWSignature  
4-7 dCSWTag  
8-11 dCSWDataResidue  
12 bCSWStatus  
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USING THE MASS STORAGE CLIENT 
DRIVER

Installing the Mass Storage Client Driver
The Mass Storage Client Driver is installed as a part
of complete USB Embedded Host support package,
available from the Microchip web site
(http://www.microchip.com/usb). Refer to “AN1140
USB Embedded Host Stack” for more information on
installation.

Application Architecture
Most applications will not interface directly with the
USB Host Mass Storage Client Driver. Instead, they will
use a media interface layer, which will interface with the
Client driver, which in turn will use the host stack driver.
For example, the application described by “AN1145
Using a USB Flash Drive on an Embedded Host”, has
five layers including the application layer, as shown in
Figure 2.

FIGURE 2: APPLICATION 
ARCHITECTURE

The “SCSI Command Support” layer is the media
interface layer that converts file system commands to
SCSI commands and sends them to the USB
Peripheral using the USB Mass Storage Class.

Note: For detailed information about the USB
Host Mass Storage Class Driver API,
please refer to “AN1141 USB Embedded
Host Stack Programmer's Guide” and the
API documentation provided in the Help
directory. 

     Application 

File System Support

SCSI Command Support

     Mass Storage Client Driver

USB Embedded Host Driver
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CONFIGURING THE CLASS

Using the USB Configuration Tool
Use the USB configuration tool, USBConfig.exe, to
configure the Mass Storage client driver for an
application.  This tool is installed in the
.\Microchip\USB directory of the installation.

In order to use the Mass Storage client driver for a USB
Embedded Host, select the USB device type of the
application on the Main tab.

FIGURE 3: USB CONFIGURATION - MAIN
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Select the Host tab to configure basic Host operation
as shown in Figure 4. The Mass Storage Client Driver
requires support for Control and Bulk endpoints. If the
application contains no classes that require Interrupt
or Isochronous endpoints, then support for those
endpoint types can be disabled.
Mass Storage devices can respond rather slowly in
comparison to the USB’s 1 ms communication frame.
Therefore, it is recommended to allow a large number
of NAKs before terminating the communication
attempt. Also, some devices require longer than the
USB specification of 100 ms to initialize after power-up.

Therefore, it is recommended to increase the attach
debounce interval.  Then enter the name of the function
in the main source file that serves as the
application-level event handler.  
The USB Mass Storage Client Driver can either poll the
USB Host driver for transfer status or respond to USB
Host driver transfer events. Refer to the section ‘‘Event
Generation” below for more information about this
selection.

FIGURE 4: USB CONFIGURATION - HOST
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Select the Mass Storage tab, check the Mass Storage
Client is used in Host Mode checkbox to enable
support for a Mass Storage Embedded host as shown
in Figure 5.
Many Mass Storage devices use a SCSI interface
protocol. Support for this protocol is provided with the
Mass Storage client driver. Since each function in this
layer must complete before the next operation can
begin, Mass Storage transfer events are not used.

Click on Generate to create the configuration files,
usb_config.c and usb_config.h, and store them
in the project directory.

FIGURE 5: USB CONFIGURATION - MASS STORAGE

DEFINING THE INTERFACE 
FUNCTIONS
The client driver requires two interface functions in the
media interface layer. The first is the initialization
handler, which is called after the Peripheral has been
enumerated and initialized by the Mass Storage client
driver. The initialization handler should be of the type
defined by the typedef:
typedef BOOL (*USB_CLIENT_INIT) (BYTE
address, DWORD flags);

This function performs initialization specific to the
media interface. If initialization occurs with no error, this
routine should return TRUE. If errors are encountered,
this routine should return FALSE, and no transfers to
the Peripheral will be allowed.
The second interface function is required to handle
events that occur during normal operation. This event
handler should be of the type defined by the typedef:

typedef BOOL (*USB_CLIENT_EVENT_HANDLER)
(BYTE address, USB_EVENT event, void
*data, DWORD size);
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For example, one of the events that can occur is
EVENT_DETACH. This occurs when a device has
detached from the bus. In this case, the media interface
layer will need to update its status, by doing operations
such as removing the device from its list of attached
media.
See the API documentation provided in the Help
directory for a complete list of events.
The client driver requires a list of the media interface’s
required Peripheral initialization and event handlers.
This list is defined by the configuration tool
USBConfig.exe, provided with the stack. 

EVENT GENERATION
The client driver can be configured to utilize transfer
events (EVENT_TRANSFER) from the USB Host layer.
In addition, the client driver can be configured to
generate transfer events (EVENT_MSD_TRANSFER) for
the media interface layer. These two events can be
configured independently of each other, giving four
possible combinations as shown in Table 3 (below).

TABLE 3: EVENT CONFIGURATIONS

If USB Embedded Host transfer events are used, the
application will require more program and data
memory, but application processing will be performed
more efficiently. The USB Embedded Host transfer
event configuration is transparent to the media
interface layer.
If USB Embedded Host MSD events are used, more
program memory is required, and the media interface
layer that handles these events must be structured
properly. In general, the code architecture required to
utilize transfer events is more sophisticated, and more
difficult for beginning C programmers to design,
develop, debug and maintain. 
The choice of whether or not to utilize USB Embedded
Host MSD transfer events can also depend on the
implementation of the other layers in the application.
For example, “AN1045 Implementing File I/O
Functions using Microchip’s Memory Disk Drive File
System Library” provides functions to open, close, read
from and write to files in a format that PCs can use.
Since a user should not be able to write to a file until

that file is successfully opened, the implementation of
the Memory Disk Drive File System blocks execution of
other tasks until the requested operation is complete.
Since the File System layer blocks execution, there is
no benefit to structuring the media interface layer to
utilize USB Embedded Host MSD transfer events.
Therefore, the simpler polling mechanism is used.

CLIENT DRIVER INITIALIZATION
The Host Mass Storage Client Driver is initialized by a
single function:
BYTE USBHostMSDInit(void);

This function initializes all internal variables for
operation. It should only be called once during the
application’s execution.
The USB Configuration tool will provide a macro
USBInitialize() to call all of the initialization
routines required by the USB Embedded Host driver,
the supported client drivers and media interfaces.

NORMAL CLIENT DRIVER 
OPERATION
Normal background operation is performed by a single
function:
void USBHostMSDTasks(void);
This routine must be called on a regular basis to allow
device operation. The polling rate is not critical, since
most of the actual transfer of information is handled
through the USB interrupt. Since an application may
support multiple classes, this function does not call the
USBHostTasks() function, which also must be called
on a regular basis.  
The USB Configuration tool will provide a macro
USBTasks() to call all of the background task routines
required by the USB Host driver and the supported
client drivers.

USB Host Driver USB Host MSD Driver

Poll for transfer status Poll for MSD transfer 
status

Poll for transfer status Generate MSD transfer 
events

Generate transfer 
events

Poll for MSD transfer 
status

Generate transfer 
events

Generate MSD transfer 
events

Note 1: Although the USB Embedded Host
utilizes USB interrupts, tranfer event
generation from the Host driver layer to
the client driver is triggered by a polling
mechanism. This is to ensure that the
USB ISR completes in a timely fashion.
For more information on the host driver ,
refer to “AN1140 USB Embedded Host
Stack” and “AN1141 USB Embedded
Host Stack Programmer's Guide”.

2: Regardless of whether or not USB
Embedded Host MSD transfer events are
used, the media interface layer is
required to contain an event handler that
processes other system events.
DS01142A-page 8 © 2008 Microchip Technology Inc.



AN1142
SUPPORTED LOGICAL UNIT 
NUMBERS
If the media interface initialization is successful, the
Mass Storage Class driver will immediately inform the
media interface layer of the maximum Logical Unit
Number of the device via the EVENT_MSD_MAX_LUN
event. All future transfer requests will be checked
against this value to ensure that a valid LUN is being
referenced.

PERFORMING A TRANSFER
Communication with a Peripheral is initiated by two
functions:
BYTE USBHostMSDRead(

BYTE deviceAddress, 

BYTE deviceLUN, 

BYTE *commandBlock, 

BYTE commandBlockLength, 

BYTE *data, 

DWORD dataLength);

BYTE USBHostMSDWrite(

BYTE deviceAddress, 

BYTE deviceLUN, 

BYTE *commandBlock, 

BYTE commandBlockLength, 

BYTE *data, 

DWORD dataLength);

The commandBlock is a block of up to 16 bytes that
tells the Peripheral which operation to perform. When
the SCSI media interface layer is used, this block
contains the SCSI command to perform the requested
operation.
A return code of USB_SUCCESS (0x00) indicates that
the operation was started successfully.  
After initiating communication, take care that
USBHostTasks() and USBHostMSDTasks() are
performed while waiting for the operation to complete.
The status of the operation can be determined by
calling the function:
BOOL USBHostMSDTransferIsComplete(

BYTE deviceAddress, 

BYTE *errorCode, 

DWORD *byteCount)

If the function returns FALSE, the transfer is not
complete, and the returned error code and byte count
are not valid. If the function returns TRUE, the returned
error code indicates the status of the operation, and the
returned byte count indicates that how many bytes
were transferred.
A transfer of data from the Host to the Mass Storage
Peripheral appears as Example 1.

EXAMPLE 1: MASS STORAGE DATA TRANSFER, PERIPHERAL TO HOST

Note: The media interface and file system layers
may not be able to support multiple LUNs.

error = USBHostMSDRead( device, 0, command, 10, buffer, size ); 
 
if (!error) 
{ 
    while (!USBHostMSDTransferIsComplete( device, &error, &count )) 
    { 
        USBHostTasks(); 
        USBHostMSDTasks(); 
    } 
} 
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CONCLUSION
The USB Embedded Host Mass Storage class provides
a simple interface to popular USB mass storage
devices. Embedded applications now can easily take
advantage of this flexible, widely available storage
media.

RESOURCES
AN1045 “Implementing File I/O Functions using
Microchip’s Memory Disk Drive File System Library”
• http://www.microchip.com
AN1140 “USB Embedded Host Stack”
• http://www.microchip.com

AN1141 “USB Embedded Host Stack Programmer's 
Guide”
• http://www.microchip.com
Universal Serial Bus web site:
• http://www.usb.org
Microchip Technology Inc. web site:
• http://www.microchip.com
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mean that we are guaranteeing the product as “unbreakable.”
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allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
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ensure that your application meets with your specifications.
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WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
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suits, or expenses resulting from such use. No licenses are
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intellectual property rights.
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