
AN1189
Implementing a Mass Storage Device Using the Microchip

USB Device Firmware Framework
INTRODUCTION
USB devices are now part a daily life for many people
throughout the world. Removable USB hard drives,
USB memory sticks (“thumb drives”), multi-card
readers and many digital cameras appear as a new
disk drive when they are plugged into the USB port of
a computer. These devices all use the Mass Storage
Device (MSD) class to communicate with the computer.

This application note will cover how to modify the
Microchip USB Device Firmware Framework to create
a Mass Storage Device. It is assumed that the user
already has some working knowledge of the USB
protocol.

BACKGROUND ON THE MASS
STORAGE DEVICE CLASS
Disk drive manufacturers have been creating compatible
disks for over two decades now. The Small Computer
System Interface (SCSI) protocol was developed during
this time, allowing drive manufacturers and system
developers to share a common protocol for device con-
trol and communication. SCSI provides the means for
reading, writing and checking the status of the drives, as
well as other available commands.

The USB Implementers Forum (USB-IF) re-used the
existing SCSI protocols to create a new physical inter-
face for mass storage applications. The USB Mass
Storage Device class is the result of that effort. The
MSD class specification uses the already existing pro-
tocols and provides a wrapper around them in order to
transport them over the USB. For external hard drives
or thumb drives, this is the SCSI protocol. By using the
same protocols as other drives, this enables MSD
devices to appear on the host as a new disk drive.

The MSD protocol has two types of command packets:
the Command Block Wrapper (CBW) at the beginning
of a data transaction, and the Command Status Wrap-
per (CSW) at the conclusion. If data is exchanged
between a host and device, it occurs between these
after the Command Block Wrapper and before the
Command Status Wrapper.

The CBW is transmitted on the USB as the first packet
of a new transaction. It defines what command is being
transmitted, what the length is, which logical device is
being talked to and a tag to help tie the command to a
status stage.

After the CBW is received by the device, there may or
may not be a data transmission phase. This depends
on what the command was and if it required a data
stage. For example, if the command was a SCSI
READ(10) command, then the device should read and
return the requested addresses during the data
transmission phase.

After all of the data has been sent, the USB host closes
out the entire transaction by sending a CSW packet.
This packet has a tag that matches the corresponding
CBW. The CSW also contains a residue field that
informs the host about any requested data that may
have not been sent during that transaction. Finally,
there are status bits that are sent back to indicate if
there were any errors while performing the requested
function.

More information about each field of the CBW and
CSW packets is available in the MSD specification,
available at the USB-IF web site (www.usb.org).

MASS STORAGE DEVICE FIRMWARE
The Microchip USB Device Firmware Framework
provides an MSD class driver that can be used to easily
create MSD devices. Several example projects are
provided as a reference starting point. Please refer to
the help file provided in the USB Device Firmware
Framework distribution for more details about these
example projects. The following section provides
details in how to take the base USB Device Firmware
Framework and create a working MSD example with
the provided class driver.

Directory Structure
The MSD class driver is included in the USB Device
Firmware Framework installation; the directory struc-
ture is shown in Figure 1. The USB files required for an
MSD application (shown in bold) must be included in
the project.

The entire MSD class driver is contained in the files,
usb_function_msd.c and usb_function_msd.h.

Author: David Flowers
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01189A-page 1

AN1189

FIGURE 1: PROJECT DIRECTORY STRUCTURE FOR MSD PROJECTS

Physical Layer
The MSD class driver was written to use the physical
layers provided in the Microchip Application Note
AN1045, “Implementing File I/O Functions Using
Microchip’s Memory Disk Drive File System Library”.

Once the physical layer is installed, the MSD code
needs to know where to find the physical interface
functions. For this purpose, there are several
application-specific definitions that must be defined by
the application:

• LUNMediaInitialize()

• LUNReadCapacity()

• LUNReadSectorSize()

• LUNMediaDetect()

• LUNSectorWrite(bLBA,pDest,Write0)

• LUNWriteProtectState()

• LUNSectorRead(bLBA,pSrc)

An example definition would look like: #define
LUNMediaInitialize() MediaInitialize().

Within the source code for the Memory Disk Drive File
System, only the physical layer files need to be added
(e.g., sd_card.c and sd_card.h); system files (e.g.,
FSIO.c) are not required. Please see the examples
accompanying the file system code for more details.

<Application>
<Application>.c/.h
USBDescriptor.c
usb_config.h
HardwareProfile.h

Microchip

USB

USBDevice.c
MSD Device Driver

Include
Compiler.h
GenericTypDefs.h
USB

usb_device.h

usb_function_msd.h

usb.h
usb_core.h

-

-

-

-

-

-

usb_function_msd.c
DS01189A-page 2 © 2008 Microchip Technology Inc.

AN1189

Functions
There are three additional function calls that are
required by the MSD class driver. The first is the initial-
ization function, USBMSDInit(). This function should
be called when the device is plugged into the USB port.
This can be added into USBCBInitEP, as shown in
Example 1. If an application requires that both the USB
host and the embedded device be able to modify the
media content, then the system files are required.

The second function is MSDTasks(). This is the main
task handler for the MSD device driver. This function
should be called frequently while the device is
connected to the USB, but only after the USB is in a

configured state. The frequency at which this function
is called helps to determine the device throughput.
Example 2 shows a typical usage.

EXAMPLE 1: TYPICAL USAGE OF USBMSDInit()

EXAMPLE 2: TYPICAL USE OF MSDTasks()

Note: When using the MSD class, please insure
that the data contents are not being modi-
fied while the host is attempting to
read/write the data. Use a semaphore or
some other mechanism to manage both
sets of code accessing the same memory.

void USBCBInitEP(void)
{

USBEnableEndpoint(MSD_DATA_IN_EP,
 USB_IN_ENABLED|USB_OUT_ENABLED|USB_HANDSHAKE_ENABLED|USB_DISALLOW_SETUP);
USBMSDInit();

}

void ProcessIO(void)
{
 if((USBDeviceState < CONFIGURED_STATE)||(USBSuspendControl==1)) return;
 MSDTasks();
}//end ProcessIO
© 2008 Microchip Technology Inc. DS01189A-page 3

AN1189

The final function that needs to be called is
USBCheckMSDRequest(). This function checks
transactions on Endpoint 0 to see if they apply to the
MSD class driver. This function can be called from the
function, USBCBCheckOtherReq(), as shown in
Example 3.

EXAMPLE 3: TYPICAL USE OF
USBCheckMSDRequest()

Definitions and Constants
The physical layer section of this document already
covered some definitions that are required to tie a
physical interface to the MSD class driver. There are a
few other definitions and constants that need to be
added or changed in order to get the MSD class driver
to work with the USB firmware framework.

DESCRIPTORS
When any USB device is attached to the bus, it is
required to send a set of descriptors that tell the computer
host what type of device it is. For most device classes,
this is typically done through the bDeviceClass,
bDeviceSubClass and bDeviceProtocol fields of
the device descriptor (see Table 9-8 of the USB specifi-
cation for more details). The MSD class driver, however,
requires that MSD devices declare their class in the inter-
face descriptor and leave these fields in the device
descriptor as unspecified (0x00), as shown in Example 4.

Inside the interface descriptor, there are three fields
that must be updated to use the MSD class driver. The
bInterfaceClass, bInterfaceSubClass and
bInterfaceProtocol need to be updated to the cor-
rect values. The bInterfaceClass field needs to
reflect that this device is an MSD device (MSD_INTF).
The bInterfaceSubClass needs to reflect which of
the subclasses defined in the MSD specification that
the application is using. The options available can also
be found in the file, usb_function_msd.h. All of the
demo applications have MSD_INTF_SUBCLASS
defined as SCSI_TRANSPARENT so that the host uses
the SCSI command set to talk to the device.

The bInterfaceProtocol must reflect which MSD
protocol method is being used for data transfer. All new
applications are required to use the Bulk Only
Transport (BOT) protocol. This protocol uses one bulk
endpoint for data from the host, one bulk endpoint for
data going to the host and the control endpoint for other
control related transfers. For this purpose, the
MSD_PROTOCOL should be set to BOT (0x50).

In addition to the updated interface fields, the endpoint
descriptors, located at the end of the configuration
descriptor, are updated, such that there is one bulk IN
endpoint and one bulk OUT endpoint. A typical MSD
configuration descriptor with all the required changes is
shown in Example 5.

EXAMPLE 4: DEVICE DESCRIPTOR FOR MASS STORAGE DEVICE (CLASS, SUBCLASS AND
PROTOCOL UNSPECIFIED)

void USBCBCheckOtherReq(void)
{
 USBCheckMSDRequest();
} //end

/* Device Descriptor */
ROM USB_DEVICE_DESCRIPTOR device_dsc=
{

0x12, // Size of this descriptor in bytes
USB_DESCRIPTOR_DEVICE, // DEVICE descriptor type
0x0110, // USB Spec Release Number in BCD format
0x00, // Class Code
0x00, // Subclass code
0x00, // Protocol code
EP0_BUFF_SIZE, // Max packet size for EP0, see usbcfg.h
0x04D8, // Vendor ID
0x0009, // Product ID: mass storage device demo
0x0001, // Device release number in BCD format
0x01, // Manufacturer string index
0x02, // Product string index
0x00, // Device serial number string index
0x01 // Number of possible configurations

};
DS01189A-page 4 © 2008 Microchip Technology Inc.

AN1189

EXAMPLE 5: CONFIGURATION DESCRIPTOR FOR MASS STORAGE DEVICE

INQUIRY RESPONSE STRING
One of the SCSI commands sent to the MSD device is
INQUIRY. This asks the device for information, such as
if the device is removable, which SCSI command sets
does this device support and various strings that are
used to label the drive in the operating system. The MSD
class driver looks for a reference inside the code defined
as const ROM InquiryResponse inq_resp[] that
should hold this data. This string should be defined
inside the user code. An example for a Mass Storage
Device is shown in Example 6.

There are three fields that need to be modified in this
structure. The first is the T10-assigned Vendor ID, pro-
vided by the INCITS Technical Committee that over-
sees the standards for SCSI storage devices. Each
vendor of a SCSI storage product should have a unique
T10 Vendor ID, in addition to the Vendor ID assigned by

the USB-IF. Users can obtain more information about
the T10 Vendor ID (available without cost at the time of
this writing) at the committee’s web site (www.t10.org).

The product ID and revision information files can be
modified as desired by the vendor. They are fixed
length strings, so any unused locations need to contain
spaces.

Figure 2 shows the Device Manager window for a host
connected to a device with the inquiry response string
shown in Example 6 (upper red box). Note how the
string in the disk drive section reflects the names
returned in the response. The name provided in the
USB section of the Device Manager (second red box)
is a generic string that is provided for all USB MSD
devices.

/* Configuration 1 Descriptor */
ROM BYTE configDescriptor1[]=
{

/* Configuration Descriptor */
9, // Size of this descriptor in bytes
USB_DESCRIPTOR_CONFIGURATION, // CONFIGURATION descriptor type
0x20,0x00, // Total length of data for this cfg
1, // Number of interfaces in this cfg
1, // Index value of this configuration
0, // Configuration string index
_DEFAULT|_SELF, // Attributes, see usbdefs_std_dsc.h
50, // Max power consumption (2X mA)

/* Interface Descriptor */
9, // Size of this descriptor in bytes
USB_DESCRIPTOR_INTERFACE, // INTERFACE descriptor type
0, // Interface Number
0, // Alternate Setting Number
2, // Number of endpoints in this intf
MSD_INTF, // Class code
MSD_INTF_SUBCLASS, // Subclass code
MSD_PROTOCOL, // Protocol code
0, // Interface string index

/* Endpoint Descriptor */
7,
USB_DESCRIPTOR_ENDPOINT,
_EP01_IN,_BULK,
MSD_IN_EP_SIZE,0x00,
0x00,

7,
USB_DESCRIPTOR_ENDPOINT,
_EP01_OUT,
_BULK,
MSD_OUT_EP_SIZE,0x00,
0x00

};
© 2008 Microchip Technology Inc. DS01189A-page 5

AN1189

EXAMPLE 6: MSD INQUIRY RESPONSE STRING

FIGURE 2: MASS STORAGE DEVICE AS IT APPEARS IN DEVICE MANAGER

/* Standard Response to INQUIRY command stored in ROM */
const ROM InquiryResponse inq_resp = {

0x00, // peripheral device is connected, direct access block device
0x80, // removable
0x04, //, 4=> SPC-2
0x02, // response is in format specified by SPC-2
0x20, // n-4 = 36-4=32= 0x20
0x00, // sccs etc.
0x00, // bque=1 and cmdque=0,indicates simple queueing
0x00, // 00 obsolete, 0x80 for basic task queueing
{'M','i','c','r','o','c','h','p'}, // T10-assigned Vendor ID
{'M','a','s','s',' ','S','t','o','r','a','g','e',' ',' ',' ',' '}, //product ID
{'0','0','0','1'} //revision information

};
DS01189A-page 6 © 2008 Microchip Technology Inc.

AN1189

usb_config.h Settings
There are several additional settings that must be
defined in order for the MSD class firmware to run cor-
rectly. These settings (Example 7) should be added to
the usb_config.h file located in the application
directory of the user’s program.

First, the MSD class library needs to be enabled. This
is done by defining USB_USE_MSD. In addition, the
MSD class firmware must know which endpoints have
been selected in the descriptors to use as the MSD
endpoints. In this example, Endpoint 1 was used for the
in and out data. The firmware must also know the size
of the endpoints used for the MSD data transfer.

Finally, the MSD class firmware needs to know how
many Logical Unit Numbers (LUNs) the device sup-
ports. The number of logical units is the number of
drives that the application wishes to show up for this
USB device. This value is 0 through 15 inclusive,
indicating the maximum Logical Unit Number (LUN) of
the system. If the system has only one logical unit, then
0 must be used. Up to 16 LUNs can be defined.

Memory Organization and Linker File
Modifications for PIC18 Devices
The MSD class library transfers an entire sector of data
(typically, 512 bytes) at a time. For this reason, a sector
size array is required in the MSD class firmware.

In PIC18 devices, the maximum data size that is
allowed in a single bank of RAM is 256 bytes. Data vari-
ables that are larger than this require modifications to
the device’s linker script. This data must reside in RAM
that is also accessible by the USB module. The newly
formed 512-byte section must be named myMSD.

Example 8 shows a typical PIC18F4550 linker script
with the required modifications. Note that the “usb6”
and “usb7” data memory sections are commented out
and the new myMSD data bank spans the memory that
was in both of these banks.

EXAMPLE 7: MSD DEFINITIONS ADDED TO usb_config.h

EXAMPLE 8: TYPICAL PIC18 LINKER SCRIPT FOR USE WITH MSD

#define USB_USE_MSD // enable MSD Class library
#define MSD_DATA_IN_EP1 // use EP1 for input data
#define MSD_DATA_OUT_EP1 // and output data
#define MSD_IN_EP_SIZE 64 // endpoint sizes in bytes
#define MSD_OUT_EP_SIZE 64 //
#define MAX_LUN 0 // only one LUN will be supported

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr0 START=0x60 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=usb4 START=0x400 END=0x4FF PROTECTED
DATABANK NAME=usb5 START=0x500 END=0x5FF PROTECTED
//DATABANK NAME=usb6 START=0x600 END=0x6FF PROTECTED
//DATABANK NAME=usb7 START=0x700 END=0x7FF PROTECTED
DATABANK NAME=myMSD START=0x600 END=0x7FF PROTECTED
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED
© 2008 Microchip Technology Inc. DS01189A-page 7

AN1189
FREQUENTLY ASKED QUESTIONS
ABOUT THE MSD FIRMWARE
Q: I am missing the physical interface files (SD-SPI.c,
SD-SPI.h, etc.). Where can I find them?

A: These files are located in the installation for
Microchip Application Note AN1045, “Implementing
File I/O Functions Using Microchip’s Memory Disk
Drive File System Library”. Install the files from AN1045
into the same base directory as the USB device
firmware framework.

Q: How do I get a MSD device working in conjunction
with the Microchip MDD library in AN1045?

A: In addition to the physical layer and configuration
files, the file system files (FSIO.c, FSIO.h, etc.) are
required. These files are only required when both the
USB host and the firmware want to read and/or modify
the contents of the memory on the drive. If only the
USB host reads and/or writes the memory, then these
files are not required. Also, depending on the system
implementation, it may be required to create a sema-
phore system to prevent the USB code and the MDD
code from accessing the physical media simultane-
ously, as corruption of the disk may result if the host
and embedded device try to write to the media at the
same time. Please see the provided demo for an
example project.

Q: What is “T10” and why does my device need a T10
Vendor ID?

A: “T10” is shorthand for Technical Committee 10 of the
International Committee on Information Technology
Standards (INCITS). INCITS is an ANSI accredited body
that develops voluntary standards for information
technology; T10 is the specific group that maintains the
Small Computer System Interface (SCSI) storage
standards.

The T10 Vendor ID is used during device enumeration to
help users correctly identify a particular device in the
host operating system. Unlike a USB-IF Vendor ID, the
T10 Vendor ID is not required for a device to be offered
for sale. Manufacturers also do not have to belong to
T10 to obtain a Vendor ID. As of the time of this
document’s publication, there is no cost to register a T10
ID.

Additional information on T10 and the Vendor ID regis-
tration process is available at the committee’s web site,
www.t10.org.

Q: Why does the device name show up as “Microchp” in
the Windows® Device Manager? Is this a typographical
error?

A: This is not a typo, but the best answer to a technical
limitation. Since the Vendor ID field sent in response to
the INQUIRY command can only be 8 bytes long,
“Microchp” is used as a shortened version of Microchip
(which would be 9 bytes).

Q: Why doesn’t MSD work with Microsoft® Windows 98?

A: The MSD demonstration uses the native Windows
driver, usbstor.sys. The Windows 98 operating
system does not provide native support for the driver.
Please refer to the Microsoft web site for details:

http://www.microsoft.com/whdc/device/storage/
usbfaq.mspx

Q: Why does MSD implement the SCSI command set
and not the RBC?

A: Currently, Windows 2000 and Windows XP do not
provide support to handle devices that implement
Reduced Block Commands (RBC, subclass 0x01)
protocol. Please refer to the Microsoft web site for
further details:

http://www.microsoft.com/whdc/device/storage/
usbfaq.mspx
DS01189A-page 8 © 2008 Microchip Technology Inc.

AN1189
SUMMARY
Developing a USB Mass Storage Device application is
no different, and no more complicated, than developing
any other USB device application. Using the Microchip
USB Device Firmware Framework and accompanying
MSD firmware, users can design a solution without
having to worry about the underlying SCSI protocols.

This application note covers the basic concepts of
creating and configuring an MSD application. Addi-
tional examples and demos are included with the
Microchip USB Device Firmware Framework for
various MSD solutions.

REFERENCES
For more information on components of the Microchip
USB Peripheral Device Support Package, the following
documents are available at the Microchip web site
(www.microchip.com/usb):

• Microchip Application Note AN1045, “Implement-
ing File I/O Functions Using Microchip’s Memory
Disk Drive File System Library” (DS01045)

• “Microchip USB Device Firmware Framework
User’s Guide” (DS51679)

For more information on USB in general:

• USB Implementers Forum, “Universal Serial Bus
Revision 2.0 Specification”,
http://www.usb.org/developers/docs/
© 2008 Microchip Technology Inc. DS01189A-page 9

AN1189

NOTES:
DS01189A-page 10 © 2008 Microchip Technology Inc.

© 2008 Microchip Technology Inc. DS01189A-page 11

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC and SmartShunt are registered trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01189A-page 12 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	Background on the Mass Storage Device Class
	Mass Storage Device Firmware
	Directory Structure
	FIGURE 1: Project Directory Structure for MSD Projects

	Physical Layer
	Functions
	EXAMPLE 1: Typical Usage of USBMSDInit()
	EXAMPLE 2: Typical Use of MSDTasks()
	EXAMPLE 3: Typical Use of USBCheckMSDRequest()

	Definitions and Constants
	EXAMPLE 4: Device Descriptor for Mass Storage Device (Class, Subclass and Protocol Unspecified)
	EXAMPLE 5: Configuration Descriptor for Mass Storage Device
	EXAMPLE 6: MSD Inquiry Response String
	FIGURE 2: Mass Storage Device as it Appears in Device Manager

	usb_config.h Settings
	Memory Organization and Linker File Modifications for PIC18 Devices
	EXAMPLE 7: MSD Definitions Added to usb_config.h
	EXAMPLE 8: Typical PIC18 Linker Script for Use with MSD

	Frequently Asked Questions About the MSD Firmware
	Summary
	References
	Worldwide Sales and Service

